Tag Archives: hydraulic excavator pump

China OEM Excavator Coupling Assy 45h Flexible Shaft Coupling for Hydraulic Pump

Product Description

 Excavator Coupling Assy 45H  Flexible Shaft Coupling for Hydraulic Pump

COUPLING
NO. LB NO. Model OEM NO. Name NO. LB NO. Model OEM NO. Name NO. LB NO. Model OEM NO. Name
1 FG-Q2001   25H  162*92 COUPLING 22 FG-Q2571 16A 155*76 COUPLING 43 FG-Q2043 S32S 235*97 COUPLING
2 FG-Q2002 MS110 DH55 30H 195*105 COUPLING  23 FG-Q2571 16AS 155*76 COUPLING 44 KLB-Q2044 S25S 163*58 COUPLING
3 FG-Q2003 30H  195*105 COUPLING ASSY 24 FG-Q2571 22A 153*76 COUPLING 45 KLB-Q2045 E200B 14T     COUPLING
4 FG-Q2004 EX200-2 40H 170*90 COUPLING 25 FG-Q2571 25A 185*102 COUPLING 46 KLB-Q2046 50AC 14T  205*40 COUPLING
5 FG-Q2005 40H   170*90 COUPLING ASSY 26 FG-Q2026 25AS 185*102 COUPLING 47 KLB-Q2047 SH280   COUPLING
6 FG-Q2006 45H  183*92 COUPLING 27 FG-Q2571 28A 178*93 COUPLING 48 KLB-Q2048 E200B  12T   COUPLING
7 FG-Q2007 45H 183*92 COUPLING ASSY 28 FG-Q2571 28AS 178*93 COUPLING 49 KLB-Q2049 50AM  16T 205*45 COUPLING
8 FG-Q2008 90H  203*107 COUPLING 29 FG-Q2571 30A 215*118 COUPLING 50 KLB-Q2050 SH200 14T  205*40 COUPLING
9 FG-Q2009 90H  203*107 COUPLING ASSY 30 FG-Q2030 30AS 215*118 COUPLING 51 KLB-Q2051 E330C 350*145 COUPLING
10 FG-Q2571 50H  195*110 COUPLING 31 FG-Q2031 50A 205*108 COUPLING 52 KLB-Q2052 E330C   COUPLING
11 FG-Q2011 50H   195*110 COUPLING ASSY 32 FG-Q2032 50AS  205*108 COUPLING 53 KLB-Q2053 168mm*48m 26T 3H   COUPLING
12 FG-Q2012 110H  215*110 COUPLING 33 FG-Q2033 90A 272*140 COUPLING 54 KLB-Q2054 242mm*72mm 50T 8H   COUPLING
13 FG-Q2013 110H 215*110 COUPLING ASSY 34 FG-Q2034 90AS 272*140 COUPLING 55 KLB-Q2055 295mm*161mm 48T 12H   COUPLING
14 FG-Q2014 140H  245*125 COUPLING 35 FG-Q2035 140A 262*132 COUPLING 56 KLB-Q2056 352mm*161mm 48T 8H   COUPLING
15 FG-Q2015 140H   245*125 COUPLING ASSY 36 FG-Q2036 140AS 262*132 COUPLING 57 KLB-Q2057 352mm*161mm 46T 8H   COUPLING
16 FG-Q2016 160H  255*134 COUPLING 37 FG-Q2037 E300B  16T  278*54 COUPLING 58 KLB-Q2058 318mm*72mm 50T 8H   COUPLING
17 FG-Q2017 160H  255*134 COUPLING ASSY 38 FG-Q2038 E450 16T 360*52 COUPLING 59 KLB-Q2059 315mm 42T   COUPLING
18 FG-Q2018 4A 104*53 COUPLING 39 FG-Q2039 SH430   12T  205*35 COUPLING 60 KLB-Q2060 268mm*100mm 42T 6H   COUPLING
19 FG-Q2019 4AS 104*53 COUPLING 40 FG-Q2040 SH200 14T  205*40 COUPLING 61 KLB-Q2061 167mm*90mm 47T 3H   COUPLING
20 FG-Q2571 8A 130*70 COUPLING 41 FG-Q2041 50ASM  20T  205*40 COUPLING 62 KLB-Q2062 182mm 42T    COUPLING
21 FG-Q2571 8AS 130*70 COUPLING 42 FG-Q2042 SH160(SH60)  15T 173*22 COUPLING 63 KLB-Q2063 220mm 46T    COUPLING

 

Ntly Asked Questions:

Q1. What are your packaging conditions?
A: Generally, we pack our goods in neutral white boxes and brown cartons. If you have a legally registered patent, we can package the goods in your branded box CHINAMFG receipt of your authorization letter.

Q2: What are your payment terms?
A: T/T 30% as deposit and 70% before delivery. We will show you photos of the products and packaging before you pay the balance.

Q3. What are your delivery terms?
A : FOB price

Q4. What is your delivery time?
A: Generally speaking, it takes 15 to 30 days after receiving the advance payment. The exact delivery time depends on the item and quantity of your order. Q5: How do you

keep our business in a long term good relationship?
A: 1. We maintain good quality and competitive prices to ensure our customers benefit; 

     2.We are sincere in doing business and making friends

Our advantages:
1.Professional: we have about 10 years of experience in the field of mechanical parts and accessories .
2. Quality assurance: we cooperate with major OEM factories in China. We will check the goods strictly before sending to customers.
3. Competitive price: We offer wholesale price for OEM; high quality and after-sale parts.
4. All goods are sufficient to meet your one-stop purchase.
5. One-stop service: you can contact us at any time if you have any questions after you receive the goods. One sale will complete the whole case for the customer.
6. Cheapest shipping cost: We have cooperated with the best freight forwarder for many years, we can quote the cheapest way of shipping for you.

shaft coupling

How to Select the Right Shaft Coupling for Specific Torque and Speed Requirements

Selecting the appropriate shaft coupling involves considering the specific torque and speed requirements of the application. Here’s a step-by-step guide to help you choose the right coupling:

1. Determine Torque and Speed:

Identify the torque and speed requirements of the application. Torque is the rotational force required to transmit power between the shafts, usually measured in Nm (Newton-meters) or lb-ft (pound-feet). Speed refers to the rotational speed of the shafts, typically measured in RPM (revolutions per minute).

2. Calculate Torque Capacity:

Check the torque capacity of various shaft couplings. Manufacturers provide torque ratings for each coupling type and size. Ensure that the selected coupling has a torque capacity that exceeds the application’s torque requirements.

3. Consider Misalignment:

If the application involves significant shaft misalignment due to thermal expansion, vibration, or other factors, consider flexible couplings with good misalignment compensation capabilities. Elastomeric or beam couplings are popular choices for such applications.

4. Assess Operating Speed:

For high-speed applications, choose couplings with high rotational speed ratings to avoid resonance issues and potential coupling failure. High-speed couplings may have specialized designs, such as disk or diaphragm couplings.

5. Evaluate Environmental Conditions:

If the coupling will operate in harsh environments with exposure to chemicals, moisture, or extreme temperatures, select couplings made from corrosion-resistant materials or with protective coatings.

6. Check Torsional Stiffness:

In applications requiring precision motion control, consider couplings with high torsional stiffness to minimize torsional backlash and maintain accurate positioning. Bellows or Oldham couplings are examples of couplings with low torsional backlash.

7. Size and Space Constraints:

Ensure that the selected coupling fits within the available space and aligns with the shaft dimensions. Be mindful of any installation limitations, especially in confined spaces or applications with limited radial clearance.

8. Consult Manufacturer’s Data:

Refer to the manufacturer’s catalogs and technical data sheets for detailed information on each coupling’s torque and speed ratings, misalignment capabilities, materials, and other relevant specifications.

9. Consider Cost and Maintenance:

Compare the costs and maintenance requirements of different couplings. While some couplings may have higher upfront costs, they could offer longer service life and reduced maintenance costs in the long run.

By following these steps and considering the specific torque and speed requirements of your application, you can select the right shaft coupling that will ensure efficient power transmission and reliable performance for your mechanical system.

“`shaft coupling

Comparing Shaft Couplings with Other Types of Couplings in Performance

Shaft couplings are essential components in mechanical power transmission systems, and their performance characteristics vary depending on the coupling type. Let’s compare shaft couplings with other common types of couplings:

1. Shaft Couplings:

Shaft couplings come in various designs, including flexible and rigid couplings. They are widely used in a broad range of applications due to their ability to transmit torque and accommodate misalignments between rotating shafts. Flexible shaft couplings, with elastomeric or metallic elements, offer good misalignment compensation and damping characteristics. Rigid couplings, on the other hand, provide precise torque transmission and are ideal for applications where shafts are well-aligned.

2. Gear Couplings:

Gear couplings are robust and designed for heavy-duty applications. They consist of two external gear hubs with internal gear teeth that mesh together. Gear couplings can handle high torque, high-speed, and angular misalignment. They are often used in demanding industries such as steel, mining, and paper manufacturing.

3. Grid Couplings:

Grid couplings feature a flexible grid element between the two halves of the coupling. They provide excellent shock absorption and misalignment compensation. Grid couplings are commonly used in pumps, compressors, and other industrial machinery.

4. Disc Couplings:

Disc couplings utilize flexible metallic discs to transmit torque and compensate for misalignment. They offer high torsional stiffness, making them suitable for applications requiring precise motion control, such as robotics and CNC machines.

5. Jaw Couplings:

Jaw couplings consist of two hubs with elastomeric spider inserts. They are easy to install, have good misalignment capabilities, and offer electrical isolation between shafts. Jaw couplings are widely used in light to medium-duty applications.

6. Oldham Couplings:

Oldham couplings have three discs—two outer discs with slots and a central disc with a tongue that fits into the slots. They provide excellent angular misalignment compensation while maintaining constant velocity between shafts. Oldham couplings are commonly used in printing machines and conveyors.

7. Beam Couplings:

Beam couplings are made from a single piece of flexible material with spiral cuts. They offer good misalignment compensation and torsional flexibility, making them suitable for precision equipment like encoders and servo motors.

The choice of coupling depends on the specific requirements of the application, including torque, speed, misalignment compensation, environmental conditions, and space limitations. Each coupling type has its strengths and limitations, and selecting the right coupling is crucial to ensure optimal performance and reliability in the mechanical system.

“`shaft coupling

How Does a Flexible Shaft Coupling Differ from a Rigid Shaft Coupling?

Flexible shaft couplings and rigid shaft couplings are two distinct types of couplings, each designed to serve different purposes in mechanical power transmission. Here are the key differences between the two:

1. Flexibility:

The most significant difference between flexible and rigid shaft couplings is their flexibility. Flexible couplings are designed with elements that can deform or flex to accommodate misalignments between the shafts. This flexibility allows for angular, parallel, and axial misalignments, making them suitable for applications where shafts are not perfectly aligned. In contrast, rigid couplings do not have this flexibility and require precise alignment between the shafts.

2. Misalignment Compensation:

Flexible couplings excel in compensating for misalignments, making them ideal for applications with dynamic conditions or those prone to misalignment due to thermal expansion or vibrations. Rigid couplings, on the other hand, are used in applications where perfect alignment is critical to prevent vibration, wear, and premature failure.

3. Damping Properties:

Flexible couplings, particularly those with elastomeric or flexible elements, offer damping properties, meaning they can absorb and reduce shocks and vibrations. This damping capability helps protect the connected equipment from damage and enhances system reliability. Rigid couplings lack this damping ability and can transmit shocks and vibrations directly between shafts.

4. Torque Transmission:

Both flexible and rigid couplings are capable of transmitting torque from the driving shaft to the driven shaft. However, the torque transmission of flexible couplings can be limited compared to rigid couplings, especially in high-torque applications.

5. Types of Applications:

Flexible couplings find applications in a wide range of industries, especially in situations where misalignment compensation, vibration damping, and shock absorption are essential. They are commonly used in conveyors, pumps, compressors, printing presses, and automation systems. Rigid couplings are used in precision machinery and applications that demand perfect alignment, such as high-speed spindles and certain types of precision equipment.

6. Installation:

Flexible couplings are relatively easier to install due to their ability to accommodate misalignment. On the other hand, rigid couplings require careful alignment during installation to ensure proper functioning and prevent premature wear.

The choice between a flexible and a rigid shaft coupling depends on the specific requirements of the application. If misalignment compensation, damping, and flexibility are critical, a flexible coupling is the preferred choice. If precision alignment and direct torque transmission are essential, a rigid coupling is more suitable.

“`
China OEM Excavator Coupling Assy 45h Flexible Shaft Coupling for Hydraulic Pump  China OEM Excavator Coupling Assy 45h Flexible Shaft Coupling for Hydraulic Pump
editor by CX 2023-11-16